专题:低维材料非线性光学与器件

基于二维材料异质结可饱和吸收体的超快激光器*

龙慧 胡建伟 吴福根 董华锋†

(广东工业大学物理与光电工程学院,广州 510006)

(2020年8月1日收到; 2020年9月15日收到修改稿)

可饱和吸收体作为非线性光学行为的物质载体,是获得超快激光的关键材料.基于石墨烯、过渡金属硫化物、拓扑绝缘体、黑磷等二维材料为代表的可饱和吸收体具有不同的光学优点,但仅依赖某一方面光学优势的单一材料,很难避免其应用的局限性.通过异质结结构结合不同二维材料的优势,达到光学互补效应,为制备高性能的新型可饱和吸收体,实现短脉宽高峰值功率的输出提供了思路和借鉴.本文总结了异质结可饱和吸收体的制备方法、能带匹配模型、电子跃迁机理,并从工作波长、输出脉宽、重复频率、脉冲能量等重要参数对国内外基于二维材料异质结激光器的研究进展进行了综述,此外,对二维材料异质结在光调制器、超快激光、可饱和吸收体、光开关等方向的发展前景进行了展望.

关键词:二维材料,异质结,可饱和吸收体,超快激光 **PACS**: 81.07.Bc, 79.60.Jv, 42.55.Wd, 42.65.Re

DOI: 10.7498/aps.69.20201235

1 引 言

超快激光具有超窄脉宽,能够达到皮秒甚至飞 秒量级,能将很高的光能集中到很窄的时间间隔内 并聚积到小面积上,从而获得巨大的单脉冲能量和 超高的峰值功率.在当今对信息传输和处理要求达 到空前规模和速度的信息化社会中起着举足轻重 的作用,成为科学界和工业应用领域不可或缺的工 具^[1,2],其应用极其广泛,主要包括精密钻孔加工、 超快光谱、医学成像、生物医疗、军事武器等领域. 在不损坏底层区域材料的情况下,超快激光的瞬间 局部温度可达 6000 ℃,高功率密度的脉冲激光能 轻易剥离外层电子,使电子脱离原子束缚,形成等 离子体,由于作用时间极短,等离子体还没来得及 将能量传递给周围材料,就已经从材料表面被烧蚀 掉,从而避免了长脉宽、低强度激光造成材料熔化 与持续蒸发现象,达到对材料表面无损伤的效果^[3]. 对于超硬、易碎、高熔点、易爆等材料的加工,超快 激光具有更加明显的优势,能解决传统加工方法和 工艺不能解决的难题.超快激光在生物医疗领域也 有重要的应用,如视力矫正,其可以精确打开眼部 组织分子链,打造出高精确度和均匀平滑的角膜 瓣^[4].此外,在军事工业、国防安全等领域也有重要 的研究价值,可应用于激光武器、测距、雷达等,这 也是当今世界战略高科技竞争的关键技术之一^[5]. 与气体和固体激光系统相比,超快光纤激光器具有 如下优点:小型化、集约化、输出激光波长多、可协 调性好,同时能胜任恶劣的工作环境,已成为诸多 行业的优选高科技工具^[6,7].

目前产生超短脉冲激光的常用方法是被动锁 模,将饱和吸收体放在激光谐振腔里,光通过可饱 和吸收体后,中间部分的损耗小于边翼部分,导致 光脉冲变窄,形成边模抑制,经过多次反射振荡最

© 2020 中国物理学会 Chinese Physical Society

^{*} 国家自然科学基金 (批准号: 62005053)、广东工业大学青年百人项目 (批准号: 220413293) 和广东省自然科学基金 (批准号: 2020A1515011178, 2017B030306003) 资助的课题.

[†] 通信作者. E-mail: hfdong@gdut.edu.cn

终产生超快激光. 可饱和吸收体是被动锁模的重要 部件,使用较多的可饱和吸收体是半导体可饱和吸 收镜 (SESAM)^[8,9], 但存在工作波长范围窄、恢复 时间长、调制深度难以调控和光损伤阈值低等诸多 问题.为了解决上述问题,一系列新型二维材料如 石墨烯、过渡金属硫化物、黑磷等被作为可饱和吸 收体,用来产生超短脉冲激光^[10-23].虽然这些基于 二维材料的可饱和吸收体都具有独特的优点,但单 一材料在使用时有各自的局限性,如:石墨烯独特 的零带隙结构和较短的激子恢复时间对可饱和吸 收体有非常积极的作用,但单层原子层的非线性光 学响应太弱,导致调制深度太小^[24];黑磷有高的开 关比和空穴迁移率,是很好的光电子器件材料,但 稳定性极差,容易被氧化从而失去原有的非线性光 学特性[25]; 拓扑绝缘体具有很强的宽带非线性光 学响应,但极低的饱和强度很难实现连续波的锁 模^[26]; MXene具有宽带光学响应和较强的有效非 线性吸收系数,但复杂的制备方法限制了其应 用^[27]; 以 MoS₂, WS₂ 为代表的过渡金属硫化物激 子衰减时间较长,导致不能有效压缩脉冲宽度^[28]. 为了避免单一材料应用的局限性,结合两种或两种 以上二维材料的光学优势组成异质结成为新的发 展方向^[29-35].

将具有不同光学性能的材料堆叠在彼此之上 组装成的结构称为异质结,是用于设计半导体电子 和光学性质的重要结构,尤其是在以范德瓦耳斯力 为主的异质结中,材料可以保持各自光学性质的同 时还能通过层间耦合作用实现电子迁移和带间跃 迁,从而达到光学协同效应^[36,37],组成的复合材料 还将表现出新的物理特性并可能进一步优化光电 特性,如光响应度和光响应时间得到提升,这将有 助于获得更高质量的锁模信号.因此,两种或多种 二维材料组成的异质结相较于单一的二维材料在 作为新型非线性光学材料方面具有巨大潜力.

本文首先报道基于二维材料异质结可饱和吸 收体的制备技术;讨论不同异质结作为可饱和吸收 体分别应用在固体和光纤激光系统中,激光输出特 性如工作波长、重复频率、输出脉宽、调制深度等 重要指标的影响;最后探讨基于二维材料异质结的 超快激光器的发展趋势.鉴于非线性光学材料在当 今社会中的重要地位,在当前纳米科技条件允许的 情况下,利用以二维纳米材料为基础的异质结可饱 和吸收体来开发非线性光学新材料有望获得性能 优越的新型光学功能材料.

2 异质结可饱和吸收体的制备和非 线性测试

从 2004年,曼切斯特大学 Geim 小组^[38] 通过 胶带机械剥离出石墨烯,到后来不断涌现的其他二 维材料,过渡金属硫化物、拓扑绝缘体、黑磷、氮化 硼、过渡金属碳/氮化物等,其制备方法分为自上 而下法和自下而上两大类.其中自上而下法是破坏 材料层间的范德瓦耳斯力得到少层的纳米材料,包 括微机械剥离、声波辅助液相剥离、离子插层辅助 液相剥离等方法.自下而上法是在分子级别通过原 子堆叠生长成纳米材料,包括水热法、化学气相沉 积法 (CVD)、磁控溅射法、分子束外延法、激光沉 积法等.异质结的制备是在单一二维材料制备的基 础上进行叠加,通常有机械剥离 + 机械剥离,液相 超声 + 液相超声过滤成膜,CVD + CVD 直接生 长或转移成膜,磁控溅射直接生长或转移成膜,主 要制备方法如图 1 所示.

2.1 机械剥离 + 机械剥离

机械剥离 + 机械剥离方法适合于二维材料晶 体剥离, 先把一种材料纳米片转移到衬底上, 然后 再通过机械剥离把另一种材料转移到第一种材料 之上, 从而形成异质结结构, 由于直接从晶体上剥 离, 获得的二维材料本身的光学性能得到很好的保 存, 但制备的纳米片尺寸偏小, 因此难以成为规模 化的产业技术, 目前主要应用于实验室研究^[25,39]. 另外, 该方法所需原料价格昂贵, 主要依赖经验且 随机性大, 因此较少应用在二维材料异质结的制备 当中. Pezeshki 等^[40] 采用机械剥离叠加法把 α-MoTe₂转移到 MoS₂ 组成异质结, 如图 2 所示. 该 结构是基于 Mo 原子建立起来的异质结, 表现出很 好的光伏特性^[40].

图 2 (a) 机械剥离 α-MoTe₂/MoS₂ 异质结示意图^[40]; (b) 器件结构图^[40]

Fig. 2. (a) Schematic of α -MoTe₂/MoS₂ heterostructure prepared by mechanical exfoliation^[40]; (b) the optical microscopy image^[40].

2.2 液相超声 + 液相超声过滤成膜

液相超声剥离是将块体材料分散到溶剂中然 后进行声波降解,在气泡爆裂瞬间伴随振动波, 从而在块材间产生集中拉应力来辅助剥离,该方法简单、成本低、效率高,能进行大体积材料的制备^[41-45]. Xu 课题组^[46]采用 50 mg Graphite 和 50 mg WS₂粉末分散在 300 mL 异丙醇溶液里,然

图 3 (a) 液相超声剥离法制备 WS₂/Graphene 异质结流程图及不同掺杂含量对成膜厚度的影响; (b) 异质结原子力显微镜图; (c) X 射线衍射图; (d) 吸收强度随抽滤体积的变化; (e) WS₂, Graphene, 及 WS₂/Graphene 异质结 Z-扫描结果; (f) WS₂, Graphene, 及 WS₂/Graphene 三阶非线性系数及 FOM 比较^[41]

Fig. 3. (a) Illustration of preparation procedures of WS₂/Graphene heterostructure films by liquid phase exfoliation, a series of of WS₂/Graphene heterostructure films with different thickness obtained from different filtration volume; (b) atomic force microscopy image of WS₂/Graphene heterostructure films; (c) X-ray diffraction patterns; (d) absorption as a function of filtration volume at 800 nm; (e) open-aperture Z-scan results of WS₂, Graphene, and WS₂/Graphene heterostructure films with the thickness of ~135 nm; (f) histogram of the imaginary part of the third-order nonlinear coefficient Im $\chi^{(3)}$ and figure of merit (FOM) of WS₂, Graphene, and WS₂/Graphene heterostructure^[41].

后在 67 W超声功率下超声 70 min, 7000 r/min 离 心 10 min取上清液, 通过过滤不同体积的上清液 制备出不同厚度的 Graphene/WS₂ 异质结薄膜, 通过控制滤液比例和体积分别实现对薄膜成分和 厚度的调控, 如图 3(a) 和图 3(b) 所示. Graphene/ WS₂ 两种材料之间能达到很好的协同作用, 实现 载流子转移和电子空穴对的有效分离, 异质结的可 饱和吸收特性表现出比单一材料更好的饱和吸收 特性, 如图 3(c)—(f), 异质结有优异的三阶非线性 系数和 FOM (figure of merit).

MoTe₂和 MoS₂粉末分别分散在异丙醇 (IPA) 和去离子水溶液中,700 W 各超声 1 h, 异质结溶液 由两种溶液混合然后再超声 30 min 得到, 并且以 6000 r/min 速率离心 30 min, 采用孔径为 0.22 μm 的滤膜真空过滤, 通过控制抽滤的溶液体积而得 到不同厚度的异质结薄膜, 见图 4(a); 从图 4(b) 和 图 4(c) 所示 Z-扫描数据看, MoTe₂/MoS₂ 异质结 饱和吸收特性比 MoS₂和 Graphene 有很大程度的 提高, 为后续作为可饱和吸收体在光纤激光器中的 应用奠定了基础.同时, 图 4(c) 进一步说明, 随着 滤液体积的增大, 得到的薄膜厚度也增大, 从而表 现出更好的饱和吸收特性[47].

2.3 CVD 转移法

CVD 法能得到高质量的数层甚至是单层的二 维材料[48-52],在异质结的制备过程中,分别用 CVD 法制备出单一的二维材料, 然后把另一种材 料转移到其上,从而形成异质结结构. Hong 等^[53] 采用 CVD 生长出单层 MoS₂, 再通过引入高分子 PMMA 作为转移中间物, 然后转移到单层 WS, 薄 膜上, 最后把 PMMA 去掉, 得到异质结, 此结构 非常稳定,且同时存在两者各自的特征拉曼峰,如 图 5(a) 和图 5(b). Chen 等^[54] 采用两步 CVD 法合 成制备出 MoS₂/WS₂ 异质结, 采用三温区 CVD 炉 子,分别放置 WO3, MoO3, S 作为前驱体, 100 µm 三角形 WS2 晶体首先生长在 SiO2/Si 衬底上, 单 层 MoS₂生长在 WS₂上面, 形成 MoS₂/WS₂ 异质 结,载流子在界面间的迁移速率比层内快得多, 从而在带间快速移动,能达到低功率自锁模的效 果,这对材料的饱和吸收特性是非常有利的,同时 异质结的光致发光光谱表明其是宽带吸收,预示着 其在宽带可饱和吸收应用方面拥有独特的优势,如 图 5(c) 和图 5(d). Graphene-Bi₂Te₃ 异质结的制备

图 4 (a) 液相超声剥离法制备 MoTe₂/MoS₂ 异质结流程图及不同掺杂含量对成膜厚度的影响; (b) MoTe₂, MoS₂, 及 MoTe₂/MoS₂ 的 Z-扫描结果; (c) 不同厚度的 MoTe₂/MoS₂ 异质结薄膜 Z-扫描结果^[47]

Fig. 4. (a) Illustration of preparation procedures of $MoTe_2/MoS_2$ heterostructure films by liquid phase exfoliation; (b) Z-scan results of $MoTe_2$, MoS_2 and $MoTe_2/MoS_2$ heterostructure films under the pump intensity of 606 GW·cm⁻² with the thickness of ~80 nm; (c) Z-scan results of $MoTe_2/MoS_2$ heterostructure films with thickness of 30, 60, 80, 100, 120 nm at 606 GW·cm⁻², respectively^[47].

同样采用 CVD 方法, 首先, 石墨烯长在铜网上, 然后以石墨烯为衬底, 通过物理气相沉积法把 Bi₂Se₃ 粉末覆盖到其表面, 形成堆叠^[55], 在截面上 很好地实现了电荷转移, 导致其光吸收特性明显高 于单一的石墨烯材料, 如图 5(e) 和图 5(f).

深圳大学张晗课题组^[56]采用二次 CVD 生长 法制备出 Graphene-Bi₂Te₃ 异质结,首先单层石墨 烯生长在铜基底上,然后 Bi₂Te₃ 纳米片以石墨烯 表面原子为模板在其上生长,由于两者有相同的六 边形结构,通过精确控制生长过程中的实验参数, 可以得到大约 4 层厚度的 Bi₂Te₃ 纳米片,相应的 原子力显微镜 (AFM) 图如图 6(b) 所示,得到的异 质结结构在 900—2000 nm 都有吸收,可以在激光 器中实现宽波段响应,如图 6(c) 所示.山东大学 陈峰课题组^[32]分别用 CVD 制备石墨烯和 WS₂, 再通过引入转移法把 WS_2 叠加在石墨烯上面, 形成 WS_2 -Graphene 异质结, 如图 6(d), 该异质结表现出很强的饱和吸收特性, 如图 6(e), 其饱和强度达到 4.72 GW/cm², 非线性吸收系数为 9.7 × 10⁴ cm/GW, 远远高于 WS_2 的 1.33 × 10³ cm/GW.

2.4 磁控溅射法

中国科学院物理研究所的魏志义课题组^[57] 采 用磁控溅射法, 腔压设定在 1.7 × 10⁻³ Pa, 持续 通入氩气, 生长出 MoS₂ 薄膜, 然后将 WS₂ 纳米片 沉积在其表面, 得到 MoS₂/WS₂ 异质结薄膜, 为了 防止其氧化, 在异质结的表面上沉积金膜, 其表面 图和剖面图如图 7(a) 和图 7(b) 所示. 拉曼图中分 别出现两者的特征峰, 说明存在很好的结合, 调制 深度达 19.12%, 饱和强度为 1.361 MW/cm², 表现出

图 5 (a), (b) CVD 制备的单层 MoS₂并转移到单层 WS₂上组成 MoS₂/WS₂ 异质结及其特征拉曼光谱^[53]; (c), (d) 三角形的 WS₂ 生长在 MoS₂薄膜上,及相应的 PL 光谱^[54]; (e), (f) Bi₂Te₃颗粒生长在石墨烯薄膜上形成 Bi₂Te₃/Graphene 异质结及吸收光谱^[55]

Fig. 5. (a) Schematic and (b) Raman spectrum of MoS_2/WS_2 heterostructure^[53]; (c) optical microscope photograph of monolayer triangular WS₂ grown on monolayer MoS_2 nanosheet; (d) photoluminescence (PL) spectrum of WS₂ monolayer, MoS_2 monolayer and MoS_2/WS_2 heterostructure^[54]; (e) schematic diagram of as-grown Bi₂Te₃/Graphene heterostructure on SiO₂/Si substrate; (f) absorption spectrum of Graphene and Bi₂Te₃/Graphene heterostructure^[55].

图 6 (a)—(c)两次 CVD 法合成 Bi₂Se₃/Graphene AFM 图和对应的厚度,以及在 900—2000 nm 波段内吸收光谱^[56]; (d), (e) CVD 转移法制备 WS₂-Graphene 异质结结构图及 Z-扫描曲线^[32]

Fig. 6. (a) AFM image of $Bi_2Te_3/Graphene$ heterostructure fabricated by two-step CVD method on the SiO_2 substrate; (b) thickness profiles along line 1 in (a); (c) absorption spectrum of $Bi_2Te_3/Graphene$ heterostructure from 900–2000 nm^[56]; (d) schematic of WS₂/Graphene heterostructure after transferring successfully; (e) Z-scan graph of WS₂, Graphene and WS₂/Graphene heterostructure^[32].

图 7 (a), (b) 磁控溅射得到的 MoS₂-WS₂ 扫描电子显微镜正面图和剖面图; (c) Raman 光谱; (d) 异质结的入射光强度和透过率 之间的关系图^[57]

Fig. 7. Scanning electron microscope images of MoS_2/WS_2 heterostructure from the top view (a) and side view (b); (c) Raman spectrum of MoS_2 , WS_2 and MoS_2/WS_2 heterostructure; (d) transmission of MoS_2/WS_2 heterostructure with respect to the power intensity of incident light^[57].

很强的饱和吸收性能, 如图 7(c) 和图 7(d)所示^[57].

3 异质结电子跃迁机理

在异质结结构中,两种不同材料存在载流子的 产生、跃迁、复合等效应^[53,58-62].根据以往对异质 结构超快动力学的研究,异质结构中的能带排列有 两种类型,即I型和II型.在I型排列中,导带最 小值和价带最大值位于同一材料中,具有窄的带 隙.光激发的电子和空穴在具有较宽禁带的材料中 会转移到禁带较窄的材料上.然而,窄禁带材料中 的光激发载流子由于能量低而不能进行层间转移. 在 II型排列中,导带最小值和价带最大值位于不 同的材料中,由于超快的电荷转移,II型排列中的 光激发电子和空穴可以迅速分离.对于本文提到的 异质结结构都是属于 II 型.

如图 8(a) 所示,在 MoS₂/WS₂ 异质结中,光 激发产生的电子倾向处在 MoS₂ 导带上,产生的空 穴处于 WS₂ 的价带上,单层 MoS₂ 的层内载流子 重组时间大概为 2 ps,而在 WS₂-MoS₂ 异质结中, 空穴从 MoS₂转移到 WS₂大约为 50 fs,这比二硫 化钼本身的载流子复合要快得多,能有效地实现载 流子转移,从而快速达到饱和吸收的目的^[63].相似 的现象在 MoTe₂/MoS₂ 异质结中也有出现,如 图 8(b) 所示^[47]. 对于石墨烯和 MoS₂组成的异质 结结构,在抽运光的作用下,电子从 MoS₂ 价带上 跃迁到导带上,弛豫之后迅速转移到石墨烯中,电 子转移可以作为 MoS₂ 中光生载流子复合的快速 衰减通道.在 Graphene/MoS₂ 异质结界面处,较 强的内电场将加速光生载流子的转移过程.因此, 随着石墨烯与 MoS₂ 的界面耦合增强,弛豫时间将 更短,如图 8(c) 所示^[64]. 此外,增加 MoS₂ 的厚度 可以增强石墨烯与 MoS₂ 之间的电荷转移,两者之 间的协同作用有利于调制深度的增大和饱和强度 的减少.因此可以通过对单一材料厚度的调控,达 到对载流子转移的调控,实现对激光输出信号的 优化.

在 Bi₂Te₃/Graphene 组成的异质结中,界面处 形成肖特基结,成为内置电场,石墨烯中的光生电 子可以转移到 Bi₂Te₃ 的导带中,而空穴仍然留在 石墨烯的价带中.同时,Bi₂Te₃ 在抽运光作用下, 产生电子空穴对,由于势垒的存在,电子被困在 Bi₂Te₃ 内部,空穴转移到石墨烯的价带中,从而可 以有效地抑制光生载流子的复合,并且可以增加石 墨烯中大多数载流子 (空穴)的数量,从而在器件 中产生更大的光电流,如图 8(d) 所示^[55].

图 8 (a) MoS₂/WS₂异质结^[63]; (b) MoTe₂/MoS₂异质结^[47]; (c) MoS₂/Graphene 异质结^[64]; (d) Bi₂Te₃/Graphene 异质结能带及载 流子迁移图^[55]

Fig. 8. (a) Illustration of band alignment and carrier mobility of the type-II MoS_2/WS_2 heterostructure^[63]; (b) band alignment of semiconductor type-II $MoTe_2/MoS_2$ heterostructure^[47]; (c) diagram of the charge-transfer process in a $MoS_2/graphene$ heterostructure^[64]; (d) energy band diagram of $Bi_2Te_3/graphene$ heterojunction, the blue dots stand for the photogenerated electrons, while red hollow dots stand for holes^[55].

4 基于异质结可饱和吸收体在超快 激光器中的应用

近年来,二维材料凭借其优异的光学、电子、 机械性能受到广泛关注. 在光学领域, 作为可饱和 吸收体用在各种激光系统中来产生超短脉冲激光, 在一定程度上改善了目前应用较多的半导体可饱 和吸收镜存在制备工艺复杂、成本高、工作波长范 围窄 (< 100 nm) 等问题. 这些二维材料由于各自 的结构特殊性而具有各自的光学优势,石墨烯独特 的零带隙结构和较短的激子恢复时间对可饱和吸 收体有非常积极的作用; 以 MoS₂, WS₂ 为代表的 过渡金属硫化物具有较高损伤阈值: 黑磷有高的开 关比和电子迁移率,是很好的光电子器件材料;拓 扑绝缘体具有很强的宽带非线性光学响应; MXene 具有宽带光学响应和较强的有效非线性吸收系数. 随着应用研究的不断发展,人们迫切需要能用于更 高功率超短脉冲激光输出的器件,因此制备具有强 非线性、超快恢复时间和高损伤阈值的可饱和吸收 体成为人们的新诉求.从已有的研究结果来看,仅 靠某一方面具有特殊优势的单一二维材料,很难避 免应用的局限性.结合两种或两种以上二维材料的 光学优势组成异质结成为新的发展方向,能有效避 免单一材料应用的局限性. 本文按照异质结应用的

激光器类型,总结和归纳其对应的可饱和吸收特性,为后续的研究提供借鉴和依据.

4.1 基于异质结的固体激光器

图 9(a) 和图 9(b) 给出了半宽为 3.28 nm 的锁 模激光光谱和脉冲宽度, 通过双曲正割 (sech²) 脉 冲形状拟合, 脉冲宽度为 404 fs. 相应的时带宽积 约为 0.364, 略大于傅里叶变换限值 (0.315), 表明 输出脉冲有轻微的啁啾. 在图 9(c)中, 42.1 MHz 处观察到一个清晰而尖锐的峰值, 信噪比为 61 dB. 射频光谱中不存在杂散调制信号, 证明了基于二 维 Te/BP 异质结纳米片的连续波锁模脉冲已经实 现. 图 9(d) 记录了宽跨距 1000 MHz的频谱, 显示 激光器具有较好的稳定性^[65].

MoS₂/Graphene 异质结光学性能的测试,设计了 Z 形折叠腔,其中心波长的光纤耦合激光器以 808 nm 为泵源, M 是用作输入耦合器的平面镜, M1 和 M2 是两个凹面镜,曲率半径为 800 nm. 输出耦合器 OC 是一个平面镜,在 1.06 μm 处透过率为 1.5%,增益介质为 Nd:GGG 晶体,整个激光器腔长为 1.8 m. 用分光计测量激光器的输出功率和光谱,如图 9(e) 和图 9(f) 所示,显示抽运功率的阈值为 1.4 W,将其提高到 1.8 W 时,可以实现 Q 开关操作.随着功率逐渐增加到 2.2 W,实现了稳

图 9 Te/BP 异质结锁模激光器的输出特性 (a), (b) 测得的 404 fs 的自相关图和相应的频谱; (c), (d) 分别记录宽距和窄距的频 谱^[65]; MoS₂/Graphene 异质结激光器 (e) 原理设置和 (f) 结构的连续波 (CW) 和 Q 开关锁模 (QML) 的输出功率与抽运功率关系图^[34]

Fig. 9. Recorded results of Te/BP heterojunction SAM-based mode-locked laser: (a), (b) measured autocorrelation trace of 404 fs and the corresponding spectrum; (c), (d) recorded frequency spectrum with a wide and a narrow span respectively^[65]; (e) schematic setup of the Q-switched mode-locking (QML) laser and (f) the output power versus pump power of the continuous wave (CW) and QML operation for MoS₂/Graphene heterostructure^[34].

定的锁模.当抽运功率为 4.5 W 时,最大输出功率 为 0.241 W,光转换效率为 5.3%^[34].

山东大学王祎然等[66]制备出石墨烯/二硫化 钼异质结,在其锁模特性的测试中,采用抽运源为 光纤耦合半导体激光器,发射波长为 978 nm, 增益 介质为布儒斯特角切割的 Yb:CALGO 晶体, 通光 长度 3 mm, 光通过一个 1:0.8 的聚焦系统聚焦到 晶体内. 平镜 M2 为输入镜, 镀有 980 nm 增透膜, 1020—1100 nm 高反膜, M3 和 M1 曲率 150 mm, 镀有 1020—1100 nm 高反膜, 通光曲率为 300 mm 的凹镜 M4 对异质结聚焦, 输出镜 OC 的透过率 为1%,如图10(a)所示.功率较低时,输出为连续 波模式. 当抽运功率升高到 4.25 W时, 由连续波 模式变为连续锁模输出,输出功率 38 mW. 当升高 至 5 W 时, 输出功率达到最大, 为 45 mW. 图 10(b) 为通过1 GHz 带宽示波器和2 GHz 带宽光电探头 测量的激光脉冲时域图形. 处于光电探测器极限变 换脉冲形状的锁模脉冲说明了激光器是连续锁模 状态. 锁模脉冲间隔 11.8 ns 与腔长对应. 图 10(c) 给出了光谱仪记录的输出光谱图.光谱宽度为 15.56 nm, 中心波长为 1063 nm 且光谱稳定, 说明 锁模的稳定性. 图 10(d) 为自相关仪共线模式下测 量的脉冲宽度. 通过 sech² 拟合, 脉冲宽度为 92 fs, 对应时间带宽积为 0.331, 接近时间带宽积极限 0.315. 图 10(e) 表明 RBW 为 0.5 kHz 时, 基频信 号中心为 84.5 MHz, 且周围没有多余的频率, 证明 了锁模的纯净性和稳定性[66].在固体激光器中,异 质结表现出比单一材料更好的饱和吸收性能和锁 模输出特性,同时可以通过控制其中一种材料的厚 度(含量),对其输出特性进行一定范围的调控⁶⁴. 此外, Zhao 等[67] 制备出硫化钼和氧化石墨烯复合 材料,结合硫化钼大的调制深度和石墨烯的稳 定性,并将其用在1064 nm的固体激光器中,重复 频率高达千兆赫兹. Jiang 等^[68] 通过水热制备出硫 化钼和石墨烯的薄膜饱和吸收体表现出宽波段 (400, 800, 1550 nm)的非线性响应. Sun 等^[64] 采

图 10 (a) 基于石墨烯/二硫化钼异质结锁模激光器装置图; (b) 锁模脉冲时域图; (c) 锁模光谱图; (d) 自相关曲线; (e) 频谱图^[66] Fig. 10. (a) Schematic of graphene/MoS₂ heterojunction mode-locked laser device; (b) pulse trains; (c) spectrum; (d) autocorrelation race for 92 fs duration; (e) frequency spectrum^[66].

用 CVD 方法合成得到硫化钼/石墨烯薄膜异质结 在 1037 nm 得到 236 fs 的超短输出脉宽, 且异质 结的非线性光学性能 (饱和强度、弛豫时间、调制 深度等)可以通过控制硫化钼的厚度来调控. 由此 可见, 基于两种不同二维材料组成的异质结可饱和 吸收体应用在固体激光器中, 能很好地实现光学互 补的效果, 有望得到宽波段响应和窄脉宽输出的新 型复合结构.

4.2 基于异质结的光纤激光器

4.2.1 基于石墨烯的异质结

目前研究较多是以石墨烯和其他二维材料,如 过渡金属二硫化物、拓扑绝缘体等,组成的异质结, 能够充分利用石墨烯的宽波段吸收特性.

Du 等^[69]采用 CVD 方法制备出 Graphene/WS₂ 异质结可饱和吸收体.如图 11(a) 所示,光谱中心位于 1568.3 nm 处, 3 dB 光谱宽度为 2.3 nm, Kelly 边带在光谱的两侧对称分布.图 11(b) 显示了锁模脉冲序列的示波器轨迹,脉冲之间的时间间隔约为 113.3 ns.从图 11(c)可以看出,在半高全宽(FWHM)为1.72 ps 时,孤子脉冲宽度约为1.12 ps.利用该脉冲宽度值和 3 dB 的光谱宽度,计算出的脉冲时间带宽积(TBP)约为 0.322,表明脉冲有轻微的啁啾.

Mu 等^[70] 通过优化腔参数,得到了 1.5 μm 石 墨烯/Mo₂C 异质结光纤激光器的稳定孤子锁模输

图 11 (a)—(c) Graphene/WS₂ 异质结的锁模性能 ((a) 光谱、(b) 脉冲序列、(c) 自相关曲线)^[69]; (d)—(f) Graphene/Mo₂C 异质结 的锁模性能 ((d) 光谱、(e) 脉冲序列、(f) 自相关曲线)^[70]; (g)—(i) Graphene/phosphorene 异质结的锁模性能 ((g) 光谱、(h) 脉冲序列、(i) 自相关曲线)^[71]

Fig. 11. (a)–(c) Mode-locking performance of Graphene/WS₂ heterostructure: (a) Optical spectrum; (b) pulse trains; (c) autocorrelation trace^[60]. (d)–(f) Mode-locking performance of Graphene/Mo₂C heterostructure: (d) Optical spectrum; (e) pulse trains; (f) autocorrelation trace^[70]. (g)–(i) Mode-locking performance of Graphene/phosphorene heterostructure: (g) Optical spectrum; (h) pulse trains; (i) autocorrelation trace^[71]. 出,如图 11(d)—(f) 所示.在 326 nm 抽运功率下的光谱如图 11(d) 所示.中心波长为 1599 nm, 3 dB 带宽为 4.1 nm.对称性和尖锐的 Kelly 边带 表明激光器处于转换孤子态.脉冲序列在脉冲顶 部没有调制波时相当稳定 (图 11(e)).脉冲重复频 率为 15.33 MHz,对应的时间间隔为 65.2 ns,与 13.04 m 的腔长匹配良好.通过自相关器的监控, 图 11(f) 获得了单脉冲包络,脉冲持续时间很短, 为 723 fs. 计算结果表明,锁模脉冲的时带宽积为 0.348,与理想 sech²脉冲非常接近,表明锁模脉冲 的啁啾很小.

深圳大学张晗课题组^[71]采用液相超声剥离法 制备 Graphene/BP 异质结,由浓度为 0.0384 mg/ mL 的 GR 及浓度为 0.0048 mg/mL 的 BP 的混合 液旋涂并干燥得到,其输出特性见图 11(g)—(i). 由 460 mW 抽运功率下相应锁模脉冲的自相关轨 迹,计算出脉冲持续时间(7)为 148 fs.与浓度为 0.32,0.04 mg/mL 的 GR-BP 溶液获得的异质结 相比,两者浓度稀释 10 倍后,脉宽由原来的 820 fs 压缩到 148 fs,减少 554%,且 GR-BP 比原始 GR 和 BP 具有更好的稳定性.由此可见,通过调节两 种单一材料的浓度比例,可以调控激光的输出特性.

Mu 等^[72]采用类似于 CVD 石墨烯的湿化学 转移技术,制备出 Graphene/Bi₂Te₃ 异质结构薄 膜,然后被转移到 FC/PC 光纤连接器的横截面上 (如图 12(a) 所示), 然后夹在两个光纤连接器之间, 这就是所谓的"三明治结构". 这种组合结构可以很 容易地集成到光纤激光器腔中作为可饱和吸收器 件. 通过改变 SMF 的长度, 可以调谐腔网色散, 实 现稳定的锁模.结果表明,在Bi₂Te₃覆盖率为15% 的异质结样品中, 在较低的阈值功率 (40 mW) 下 发生了稳定的锁模状态. 图 12(b)—(d) 总结了 140.7 mW 抽运功率下的锁模特性. 锁模脉冲的 典型光谱如图 12(b) 所示, 3 dB 带宽为 3.4 nm, 中心波长约为 1568.07 nm. 在频谱上可以清楚 地观察到对称的边带,证明孤子状态非常稳定. 图 12(c) 中所示的脉冲序列具有 17.3 MHz 的重复 率, 对应于 11.56 m 的总腔长. 考虑到测量的输出 功率为 3.07 mW, 单脉冲能量计算为 0.178 nJ. 单 孤子脉冲的自相关 (AC) 轨迹如图 12(d) 所示, 半 高全宽为 837 fs. 相应的 TBP 为 0.34. 数据非常接 近 sech²脉冲轮廓的典型值 (TBP = 0.314), 表明 孤子非常稳定,且啁啾很小.

图 12(e)显示了掺铒光纤环形腔,其工作在 C 波段用于光通信.当输入功率增加到 40 MW 时, 即使突然断电重启,也能实现自启动锁模操作.当 锁模状态稳定在 100 mW 时,可以观察到 3 dB 带 宽为 7.23 nm 的锁模光谱,其中心波长约位于 1558.8 nm.光谱中对称的 Kelly 边带代表波长为 1.5 μm 时的典型孤子形成特征.图 12(g)显示了脉 冲间隔为 43.5 ns 的脉冲序列,对应于 23 MHz 的 基本重复率和 8.8 m 的腔长.如图 13(h)所示,单 模式锁定脉冲的脉冲宽度为 481 fs,采用 sech² 脉冲形状很好地拟合.计算得到相应的 TBP 为 0.429,表明激光腔内存在轻微的啁啾^[73].

Liu 等^[74]采用 CVD 方法制备出 Graphene/ MoS₂ 异质结可饱和吸收体,并将其应用在掺铒的 光纤激光器中,在约 24 mW 的抽运功率下,该激 光器开始连续波运转.当抽运功率增加到约为 35 mW 时,实现了自启动锁模.图 12(i)—(l)显示 了基本锁模的激光性能.光谱中心位于 1571.8 nm 处,3 dB 光谱宽度为 3.5 nm. 在锁模脉冲的两侧 都有 Kelly 边带,证实了锁模脉冲的孤子特性.脉 冲序列如图 12(k) 所示,相邻脉冲的时间间隔为 84 ns.图 12(i)显示了自相关跟踪.通过假设 sech² 脉冲剖面,估计脉冲持续时间约为 830 fs.脉冲的 TBP 为 0.353,表明输出脉冲有轻微的啁啾.

4.2.2 基于其他材料的异质结

Jiang 等^[75] 制备出 InAs/GaAs 量子点异质结 可饱和吸收体,其详细结构及嵌入到激光器中的示 意图如图 13(a) 所示.测试采用平衡双探测器结构, 其饱和强度为 13.7 MW/cm²,调制深度为 1.6%. 进一步将 InAs/GaAs 量子点作为可饱和吸收体引 入到掺铒光纤激光腔中,构建了一个被动锁模激光 器.当抽运功率大于 50 mW 时,可以实现锁模.激 光输出的效率随着线性模式的增加而线性增加,如 图 13(b) 所示,观察到 3 dB 带宽为 3.2 nm 的常规 孤子的典型光谱.中心波长为 1556 nm. 重复频率 为 8.16 MHz 的射频频谱如图 13(c) 所示,对应于 24.5 m 的腔长. 在阈值抽运功率为 50 mW 时进行 了长时间稳定锁模实验,并连续稳定运行了 1 周. 测得其脉宽为 920 fs,如图 13(e) 所示.

Song 等^[76] 制备出硒碲异质结, 如图 14(a) 所示, 并将其转移到微型光纤上, 利用输入光与非线性材料相互作用的倏逝场, 将样品沉积在超细光纤

表面. 图 14(e) 显示了修饰后的超细纤维的扫描电 子显微镜图像. 通过适当的 PC 机设置, 当抽运功 率增加到约 125 mW 时, 激光锁模自启动. 图 14(b) 是测量的光谱. 光谱中边带的出现证实了脉冲的形 状为光孤子. 光谱的 3 dB 带宽约为 4.8 nm. 图 14(c) 是测量的光孤子脉冲的示波器轨迹. 脉冲具有以均 匀脉冲串描述的孤子能量量子化特性.相邻脉冲之间的时间间隔为53.9 ns,与腔长一致,并证实脉冲是由锁模产生的,锁模脉冲的脉冲宽度为889 fs,如图14(d)所示.计算出的脉冲TBP为0.533,表明脉冲有轻微的啁啾.当抽运功率增加到150 mW时,锁模可以自启动,掺镱光纤激光器的性能见

图 12 (a) Graphene/Bi₂Te₃ 异质结在光纤耦合器端面的示意图; (b)— (d) Graphene/Bi₂Te₃ 异质结的锁模特性 ((b) 光谱、(c) 脉 冲序列、(d) 自相关曲线)^[72]; (e) 掺饵光纤激光器示意图; (f)—(h) Graphene/Bi₂Te₃ 异质结的锁模特性 ((f) 光谱、(g) 脉冲序列、(h) 自相关曲线)^[73]; (i) 掺饵光纤激光器示意图; (j)— (l) Graphene/MoS₂ 异质结的锁模特性 ((j) 光谱、(k) 脉冲序列、(l) 自相关曲线)^[74]

Fig. 12. (a) Schematic of Graphene/Bi₂Te₃ heterostructure on the end-facet of fiber connector; (b)–(d) Mode-locking characteristics of Graphene/Bi₂Te₃ heterostructure: (b) Optical spectrum; (c) pulse trains; (d) autocorrelation trace^[72]. (e) Schematic of Er-doped fiber laser. (f)–(h) Mode-locking characteristics of Bi₂Te₃/FeTe₂ heterostructure: (f) Optical spectrum; (g) pulse trains; (h) autocorrelation trace^[73]. (i) Schematic of Er-doped fiber laser. (j)–(l) Mode-locking characteristics of Graphene/MoS₂ heterostructure: (j) Optical spectrum; (k) pulse trains; (l) autocorrelation trace^[74].

图 13 (a) InAs/GaAs QD 异质结可饱和吸收镜在 1550 nm 锁模时所用的实验装置; 插图为量子点可饱和吸收体的截面透射电子显微镜图像和它的 1 μm × 1 μm 的 AFM 图像; (b)—(e) 可饱和吸收体在 1550 nm 的锁模特性: (b) 输出功率与抽运功率的变化关系; (c) 输出光谱; (d) 锁模光纤激光器的 RF 光谱; (e) 自相关曲线^[5]

Fig. 13. (a) Experimental setup of mode-locked fiber laser with 1550 nm QD-SESAM; Inset: cross-sectional transmission electron microscope image of the QD-SESAM and 1 μ m × 1 μ m AFM image of the 1550 nm QDs. (b)–(e) Characteristics of mode-locked the developed fiber laser of InAs/GaAs QD: (b) Output power versus pump power; (c) output optical spectra; (d) RF spectrum of the mode-locked fiber laser; (e) autocorrelation trace^[75].

图 14(f)—(h). 图 14(f) 是锁模脉冲的光谱. 光谱呈 矩形, 这是典型的色散孤子光谱, 光谱的 3 dB 带 宽约为 7.1 nm. 与图 14(b) 所示不同, 图 14(f) 中 未观察到在线纳米级边带. 脉冲序列的示波器轨迹 如图 14(g) 所示. 相邻脉冲之间的时间间隔为 53.1 ns. 用自相关器测量脉冲宽度, 结果如图 14(h) 所示; 锁模脉冲的脉冲宽度为 11.7 ps, 表明脉冲上 存在较大的啁啾.

4.2.3 基于多层结构的异质结

中国科学院物理研究所魏志义课题组^[57] 合成的 MoS₂/WS₂ 异质结,表现出优异的可饱和吸收性能,如图 15(a)—(c)所示,脉冲序列的规则阵列表示锁模系统处于稳定的工作状态,相邻脉冲的时间间隔为 13.4 ns,对应于锁模脉冲的基本重复率74.6 MHz,脉冲持续时间为 154 fs.相应的 TBP为 0.4403,表明输出锁模脉冲有轻微的啁啾.

图 14 (a) 纤芯沉积样品示意图; (b)—(d) 样品 Te 的锁模性能 ((b) 光谱、(c) 脉冲序列、(d) 自相关曲线); (e) 50 µm 尺度下的样 品显微照片; (f)—(h) 掺镱光纤激光器的自启动锁模性能 ((f) 光谱、(g) 脉冲序列、(h) 自相关曲线)^[76] Fig. 14. (a) Schematic of deposition of the Te/Se sample on the microfiber. (b)–(d) Mode locking performance of the Te-based fiber laser: (b) Optical spectrum; (c) pulse trains; (d) autocorrelation trace. (e) Te/Se samples under microscope with 50 µm scale. (f)–(h) Self-starting mode locking performance of the Yb-doped fiber laser: (f) Optical spectrum; (g) pulse trains; (h) autocorrelation trace^[76].

魏志义课题组^[77]采用磁控溅射方法制备出 MoS₂-Sb₂Te₃-MoS₂三层异质结,三层薄膜的总厚 度为 24 nm,输出特性见图 15(d)—(f),此结构在 相对较低的锁模阈值 (80 mW 抽运功率)下,出现 了稳定的锁模状态.当抽运功率为 600 mW 时,中 心波长 1554 nm,3 dB 带宽约为 28 nm.脉冲持续 时间和最大平均输出功率为 286 fs 和 20 mW,基 于二维材料异质结饱和吸收体的光纤激光器中, 286 fs 的脉冲宽度和 20 mW 的平均输出功率达 到了最好的水平.光纤激光器的重复频率约为 36.4 MHz. 信噪比为 73 dB,说明锁模状态具有很 高的稳定性.这种强抑制噪声的能力可能与 MoS₂-Sb₂Te₃-MoS₂异质结构 SAs 的超快电子弛豫有关. 此外,深圳大学 Chen 等^[63]用磁控溅射法制备出 WS₂/MoS₂/WS₂异质结,其输出特性如图 15(g)— (i) 所示,由测量的锁模脉冲的二次谐波产生 (SHG)自相关跟踪可知 FWHM 为 455.8 fs,实际 脉冲持续时间为 296 fs,表明该异质结可饱和吸收 体是可靠的,适合于大功率光纤激光器系统.与基 于单一可饱和吸收材料的超快光子学器件相比,异 质结半导体激光器能够有效地结合两种不同材料 (如 MoS₂ 和 WS₂)的非线性光学特性,异质结中的 载流子具有超快的传输时间,界面有利于进一步增 强光与材料的相互作用,有利于被动锁模中超短脉 冲的产生.

表1总结了基于二维材料异质结的超快激光器锁模输出特性.可以看出,目前基于二维材料异质结的超快激光器以石墨烯和过渡金属硫化物(MoS₂,WS₂)为主,其他的拓扑绝缘体及黑磷次之,这主要是由于石墨烯的宽波段响应且制备工艺

成熟,是很好的衬底材料,便于与液相超声剥离, 化学气相沉积或磁控溅射制备出的其他二维材料, 形成很好的范德瓦耳斯接触,在后续激光抽运下, 为载流子的产生和迁移提供通道,从而获得短脉 宽、高峰值功率的激光输出.此外,目前异质结制 备方法主要集中在液相超声剥离和化学气相沉积, 这两种方法同时也是最初用来制备二维材料成熟 工艺,为后续异质结的制备提供了基础.异质结锁 模的波段集中在 1064 和 1550 nm,其中 Graphene/ MoS₂和 Graphene/BP 异质结在 1064 和 1560 nm 光纤激光器中表现出很好的脉宽压缩特性,输出脉 宽达 92 和 148 fs.此外,三层结构的异质结也表现 出很不错的窄脉宽输出,可能成为后续研究的热点 和方向.

Table 1. Performance summary of mode-locked lasers based on two-dimensional heterostructure.							
Material type	Type of Laser	Fabrication method	$\lambda/{ m nm}$	Pulse width	Repetition rate/MHz	Energy/nJ	Ref.
InAs/GaAs QDs	FL	MBE	1556.00	920.00 fs	8.16		[75]
GaN/InGaN	_	FIBE	408.00	$1.40 \mathrm{\ ps}$	10.00		[78]
2D Te/BP	SL	LPE	1049.10	$404.00 { m \ fs}$	42.10	6.9400	[65]
Te/Se	FL	HM	1500.00	889.00 fs	18.50	_	[76]
			1000.00	$11.70~\mathrm{ps}$	18.50		
$\mathrm{Graphene}/\mathrm{MoS}_2$	SL	LPE	1061.56	$306.00~\mathrm{ps}$	83.30	_	[34]
$\operatorname{Graphene}/\operatorname{MoS}_2$	SL	LPE	1063.00	92.00 fs	84.75	_	[66]
$\mathrm{Graphene}/\mathrm{MoS}_2$	SL	CVD	1037.20	236.00 fs	41.84	19.0000	[64]
$Graphene/MoS_2$	FL	CVD	1571.80	830.00 fs	11.93	_	[74]
$\operatorname{Graphene}/\operatorname{MoS}_2$	FL	LPE HM	1571.80	$2.20 \mathrm{\ ps}$	3.47		[68]
${\rm Graphene}/{\rm WS}_2$	FL	CVD	1593.50	55.60 ps	3.63		[79]
$Graphene/WS_2$	FL	CVD	1568.30	1.12 ps	8.83	0.5400	[69]
$Graphene/WS_2$	FL	LPE	1066.20	$450.00 \ \mathrm{ps}$	19.68	0.1108	[80]
$\rm Graphene/Mo_2C$	FL	CVD	1599.00	723.00 fs	15.33	0.7130	[70]
Graphene/BP	FL	LPE	1529.92	820.00 fs	7.43		[71]
			1531.00	$148.00 \ {\rm fs}$	7.50		
${\rm Graphene}/{\rm Bi}_{2}{\rm Te}_{3}$	FL	CVD	1565.60	$1.80 \mathrm{\ ps}$	6.91		[56]
			1049.10	$144.30~\mathrm{ps}$	3.70		
$Graphene/Bi_2Te_3$	FL	CVD	1568.07	837.00 fs	17.30	0.1780	[72]
$\rm Graphene/Bi_2Te_3$	FL	CVD	1058.90	$189.94 \mathrm{\ ps}$	79.13	_	[81]
Bi ₂ Te ₃ /FeTe ₂	FL	SMD	1064.00	$164.70~\mathrm{ps}$	15.02	_	[73]
			1550.00	$481.00~\mathrm{fs}$	23.00		
$MoS_2/graphene/WS_2$	FL	CVD	1567.51	_	2.10		[82]
MoS_2/WS_2	FL	MSD	1560.00	154.00 fs	74.60		[57]
$WS_2/MoS_2/WS_2$	FL	MSD	1562.66	296.00 fs	36.46		[63]
MoS ₂ /Sb ₂ Te ₃ /MoS ₂	FL	MSD	1554.00	286.00 fs	36.40		[77]

表1 基于异质结可饱和吸收体锁模激光器的性能总结

注: SL, solid-state laser; FL, fiber laser; MBE, molecular beam epitaxy; FIBE, focused ion beam etching; LPE, liquid phase exfoliation; HM, hydrothermal method; CVD, chemical vapour deposition; SMD, selective metal deposition; MSD, magnetron sputtering deposition; SASR, self-assembly solvothermal route.

图 15 (a)—(c) MoS₂/WS₂ 异质结锁模特性 ((a) 光谱、(b) 脉冲序列、(c) 自相关曲线)^[57]; (d)—(f) MoS₂/Sb₂Te₃/MoS₂ 异质结锁 模特性 ((d) 光谱、(e) 频谱、(f) 自相关曲线)^[77]; (g)—(i) WS₂/MoS₂/WS₂ 异质结锁模特性 ((g) 光谱、(h) 频谱、(i) 自相关曲线)^[63] Fig. 15. (a)–(c) Mode-locking performance of MoS₂/WS₂ heterostructure: (a) Optical spectrum; (b) pulse trains; (c) autocorrelation trace^[57]. (d)–(f) Mode-locking performance of MoS₂/Sb₂Te₃/MoS₂ heterostructure: (d) Optical spectrum; (e) pulse trains; (f) autocorrelation trace^[77]. (g)–(i) Mode-locking performance of WS₂/MoS₂/WS₂ heterostructure: (g) Optical spectrum; (h) RF spectrum; (i) autocorrelation trace^[63].

5 展望和总结

本文总结了基于二维材料异质结可饱和吸收 体的制备方法,界面跃迁机理以及在激光器中的应 用研究.由于异质结的光学互补效应,能结合两者 的优势,得到调制深度大、输出脉宽窄、峰值功率 高的可饱和吸收体,进而有望制备出高性能的激光 器,这在对信息传输和处理要求有空前规模和速度 的信息化社会中起着举足轻重的作用,成为科学界 和工业应用领域不可或缺的工具.前期工作不仅为 制备高质量、高可控性的二维材料提供了一种新的 思路,而且所制备的异质结构材料具有良好的光学 性能,是可以应用于光子器件中的具有综合优点的 材料.对于目前异质结的发展情况,在如下几个方 面有望进一步完善,在制备方面应该进一步提高产 率,实现工业级产量,同时应该加强制备理论研究, 探究生长机制,从而提高制备的可控性,便于进一 步优化工艺和开发更多新型二维异质结材料;在可 饱和吸收特性的调控方面,通过理论计算从晶格、 能带、原子尺寸等寻找到有望能制备出高性能的可 饱和吸收体,同时通过调节两种二维材料之间的尺 寸、厚度、浓度等参数,达到对激光输出性能的调 控;在应用方面,提高其稳定性,探究异质结稳定 化的方法,增强应用效果,扩大应用范围,发掘已 有材料的更多应用潜力,二维材料及异质结将为科 技和工业的发展带来更多机遇和挑战.通过聚焦异 质结材料的比例和层数影响非线性效应的研究,有 望进一步减少可饱和吸收体的非饱和损耗,从而提 高光子器件的效率.

感谢深圳大学张晗老师在文章写作方向上给予的建议!

参考文献

- Wu L, Huang W, Wang Y, Zhao J, Ma D, Xiang Y, Li J, Ponraj J S, Dhanabalan S C, Zhang H 2019 Adv. Funct. Mater. 29 1806346
- [2] Jia Y, Liao Y, Wu L, Shan Y, Dai X, Cai H, Xiang Y, Fan D 2019 Nanoscale 11 4515
- [3] Russo R E, Mao X, Haichen L, Gonzalez J J, Mao S S 2002 Talanta 57 425
- [4] Rea R, Di Matteo F M, Martino M, Pandolfi M, Saccomandi P, Rabitti C, Crescenzi A, Costamagna G 2017 Lasers Med. Sci. 32 1411
- [5] Kalisky Y, Kalisky O 2011 Opt. Mater. 34 457
- [6] Malinauskas M, Albertas Ž, Hasegawa S, Hayasaki Y, Mizeikis V, Juodkazis S 2016 Light-Sci. Appl. 5 16133
- [7] Woodward R, Kelleher E 2015 Appl. Sci. 5 1440
- [8] Okhotnikov O, Grudinin A, Pessa M 2004 New J. Phys. 6 177
- [9] Tang C Y, Cheng P K, Tao L, Long H, Zeng L H, Wen Q, Tsang Y H 2017 J. Light Technol. 35 4120
- [10] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P, Tang D Y 2009 Adv. Funct. Mater. 19 3077
- [11] Xu J L, Li X L, Wu Y Z, Hao X P, He J L, Yang K J 2011 Opt. Lett. 36 1948
- [12] Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101 (in Chinese) [王聪, 刘杰, 张晗 2019 物理学报 68 188101]
- [13] Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin.
 69 188101 (in Chinese) [张倩, 金鑫, 张梦, 郑铮 2020 物理学报
 69 188101]
- [14] Long H, Tang C Y, Cheng P K, Wang X Y, Qarony W, Tsang Y H 2019 J. Lightwave Technol. 37 1174
- [15] Long H, Shi Y, Wen Q, Tsang Y H 2019 J. Mater. Chem. C 7 5937
- [16]~ He J, Tao L, Zhang H, Zhou B, Li J2019~Nanoscale~11~2577
- [17] Tao L, Huang X, He J, Lou Y, Zeng L, Li Y, Long H, Li J, Zhang L, Tsang Y H 2018 Photonics Res. 6 750
- [18] Yu H, Zheng X, Yin K, Cheng X, Jiang T 2015 Appl. Opt. 54 10290
- [19] Luo Z, Huang Y, Zhong M, Li Y, Wu J, Xu B, Xu H, Cai Z, Peng J, Weng J 2014 J. Lightwave Technol. 32 4077
- [20] Yan P, Liu A, Chen Y, Wang J, Ruan S, Chen H, Ding J 2015 Sci. Rep. 5 12587
- [21] Luo Z C, Liu M, Guo Z N, Jiang X F, Luo A P, Zhao C J, Yu X F, Xu W C, Zhang H 2015 Opt. Express 23 20030
- [22] Ming N, Tao S, Yang W, Chen Q, Sun R, Wang Ch, Wang S, Man B, Zhang H 2018 Opt. Express 26 9017
- [23] Lee Y W, Chen C M, Huang C W, Chen S K, Jiang J R 2016 Opt. Express 24 10675
- [24] Sun Z, Hasan T, Torrisi F, Popa D, Privitera G, Wang F, Bonaccorso F, Basko D M, Ferrari A C 2010 ACS Nano 4 803
- [25] Chen Y, Jiang G, Chen S, Guo Z, Yu X, Zhao C, Zhang H, Bao Q, Wen S, Tang D, Fan D 2015 *Opt. Express* 23 12823
- [26] Wang Y, Lee P, Zhang B, Sang Y, He J 2017 Nanoscale 9 19100
- [27] Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y, Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q 2017 Laser Photonics Rev. 12 1700229
- [28] Wang Y, Huang G, Mu H, Lin S, Chen J, Xiao S, Bao Q, He J 2015 Appl. Phys. Lett. 107 091905
- [29] Geim A K, Grigorieva I V 2013 Nature 499 419
- [30] Liu L, Chu H, Zhang X, Pan H, Zhao S, Li D 2019 Nanoscale Res. Lett. 14 112
- [31] Zhang H, Zhang F, Li X, Chen L, Wang J, Wang L 2017 Opt. Mater. 70 153

- [32] Li Z, Cheng C, Dong N, Romero C, Lu Q, Wang J, Rodríguez Vázquez de Aldana J, Tan Y, Chen F 2017 *Photonics Res.* 5 406
- [33] You Z, Sun Y, Sun D, Zhu Z, Wang Y, Li J, Tu C, Xu J 2017 Opt. Lett. 42 871
- [34] Wen Y, Zhao X S, Zhang W 2018 Optik 170 90
- [35] Zhao G, Lv X, Xie Z, Xu J 2017 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) Singapore, July 31-Aug 4, 2017 p1
- [36] Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282
- [37] He J, Wang C, Zhou B, Zhao Y, Tao L, Zhang H 2020 Mater. Horiz.
- [38] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
- [39] Wu J, Li H, Yin Z, Li H, Liu J, Cao X, Zhang Q, Zhang H 2013 Small 9 3314
- [40] Pezeshki A, Shokouh S H H, Nazari T, Oh K, Im S 2016 Adv. Mater. 28 3216
- [41] Wang W, Chen S J, Basquiroto de Souza F, Wu B, Duan W H 2018 Nanoscale 10 1004
- [42] Lu L, Liang Z, Wu L, Chen Y X, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photonics Rev. 12 1700221
- [43] Kim J, Kwon S, Cho D H, Kang B, Kwon H, Kim Y, Park S O, Jung G Y, Shin E, Kim W G, Lee H, Ryu G H, Choi M, Kim T H, Oh J, Park S, Kwak S K, Yoon S W, Byun D, Lee Z, Lee C 2015 *Nat. Commun.* 6 8294
- [44] Tao L, Long H, Zhou B, Yu S F, Lau S P, Chai Y, Fung K H, Tsang Y H, Yao J, Xu D 2014 Nanoscale 6 9713
- [45] Shi Y, Long H, Liu S, Tsang Y H, Wen Q 2018 J. Mater. Chem. C 6 12638
- [46] Lu C, Quan C, Si K, Xu X, He C, Zhao Q, Zhan Y, Xu X 2019 Appl. Surf. Sci. 479 1161
- [47] Quan C, Lu C, He C, Xu X, Huang Y, Zhao Q, Xu X 2019 Adv. Mater. Interfaces 6 1801733
- [48] Lee Y H, Zhang X Q, Zhang W, Chang M T, Lin C Te, Chang K Di, Yu Y C, Wang J T W, Chang C S, Li L J, Lin T W 2012 Adv. Mater. 24 2320
- [49] Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus M, Jing K, Kong J 2008 Nano Lett. 9 30
- [50] Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto A H C, Martin J, Adam S, Oezyilmaz B, Eda G 2014 Nano Lett. 14 1909
- [51] Zhan Y, Liu Z, Najmaei S, Ajayan P M, Lou J 2012 Small 8 966
- [52] Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Litao S, Yu T 2014 Adv. Opt. Mater. 2 12512
- [53] Hong X, Kim J, Shi S-F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682
- [54] Chen H, Wen X, Zhang J, Wu T, Gong Y, Zhang X, Yuan J, Yi C, Lou J, Ajayan P M, Zhuang W, Zhang G, Zheng J 2016 *Nat. Commun.* 7 1
- [55] Qiao H, Yuan J, Xu Z, Chen C, Lin S, Wang Y, Song J, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S, Bao Q 2015 ACS Nano 9 1886
- [56] Wang Z, Mu H, Yuan J, Zhao C, Bao Q, Zhang H 2017 IEEE J. Sel. Top. Quantum Electron. 23 8800105
- [57] Liu W J, Liu M L, Liu B, Quhe R G, Lei M, Fang S B, Teng H, Wei Z Y 2019 Opt. Express 27 6689
- [58] Lee J, Shin J H, Lee G H, Lee C H 2016 Nanomaterials 6 193

- [59] Velický M, Toth P S 2017 Appl. Mater. Today 8 68
- [60] Liu B, Long M, Cai M Q, Yang J 2018 J. Phys. Chem. Lett. 9 4822
- [61] Niu T, Li A 2015 Prog. Surf. Sci. 90 21
- [62] Ma S, Zeng L, Tao L, Tang C Y, Yuan H, Long H, Cheng P K, Chai Y, Chen C, Fung K H, Zhang X, Lau S P, Tsang Y H 2017 Sci. Rep. 7 3125
- [63] Chen H, Yin J, Yang J, Zhang X, Liu M, Jiang Z, Wang J, Sun Z, Guo T, Liu W, Yan P 2017 Opt. Lett. 42 4279
- [64] Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y, Zhang C, He J 2018 ACS Nano 12 11376
- [65] Yan B, Li G, Shi B, Liu J, Nie H, Yang K, Zhang B, He J 2020 Nanophotonics 9 2593
- [66] Wang Y R 2019 Ph. D. Dissertation (Jinan: ShanDong University) (in Chinese) [祎然 2019 博士学位论文 (济南: 山东 大学)]
- [67] Zhao G, Hou J, Wu Y, He J, Hao X 2015 Adv. Opt. Mater. 3 937
- [68] Jiang Y, Miao L, Jiang G, Chen Y, Qi X, Jiang X 2015 Sci. Rep. 5 16372
- [69] Du W, Li H, Liu C, Shen S, Liu Y, Lan C, Li C 2017 Proc. SPIE 10457, AOPC 2017: Laser Components, Systems, and Applications Beijing, China, October 24, 2017 104571 M
- [70] Mu H, Tuo M, Xu C, Bao X, Xiao S, Sun T, Li L, Zhao L, Li S, Ren W, Bao Q 2019 *Opt. Mater. Express* 9 3268
- [71] Liu S, Li Z, Ge Y, Wang H, Yue R, Jiang X, Li J, Wen Q, Zhang H 2017 Photonics Res. 5 662

- [72] Mu H, Wang Z, Yuan J, Xiao S, Chen C, Chen Y, Chen Y, Song J, Wang Y, Xue Y, Zhang H, Bao Q 2015 ACS Photonics 2 832
- [73] Zhang L, Liu J, Li J, Wang Z, Wang Y, Ge Y, Dong W, Xu N, He T, Zhang H, Zhang W 2020 Laser Photonics Rev. 14 1900409
- [74] Liu C, Li H, Deng G, Lan C, Li C, Liu Y 2016 2016 Asia Communications and Photonics Conference (ACP) Wuhan, China, Novermber 2-5, 2016 p1
- [75] Jiang C, Ning J, Li X, Wang X, Zhang Z 2019 Nanoscale Res. Lett. 14 15252
- [76] Song Y, You K, Zhao J, Huang D, Chen Y, Xing C, Zhang H 2020 Nanoscale 12 15252
- [77] Liu W, Zhu Y N, Liu M, Wen B, Fang S, Teng H, Lei M, Liu L M, Wei Z 2018 Photonics Res. 6 220
- [78] Olle V F, Vasil'v P P, Wonfor A, Penty R V, White I H 2012 Opt. Express 20 7035
- [79] Du W, Li H, Lan C, Li C, Li J, Wang Z, Liu Y 2020 Opt. Express 28 11514
- [80] Ma X, Lu B, Qi X, Lu C, Li D, Wen Z, Xu X, Bai J 2019 *Appl. Phys. Express* 12 112006
- [81] Wang Z, Mu H, Zhao C, Bao Q, Zhang H 2016 Opt. Eng. 55 081314
- [82] Chen H, Li I L, Zhang M, Wang J, Yan P 2017 Opto-Electronics Commun. Conf. OECC 2017 Photonics Glob. Conf. PGC Singapore, July 31-Aug 4, 2017 p1

SPECIAL TOPIC—Nonlinear optics and devices of low-dimensional materials

Ultrafast pulse lasers based on two-dimensional nanomaterial heterostructures as saturable absorber^{*}

Long Hui Hu Jian-Wei Wu Fu-Gen Dong Hua-Feng[†]

(School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China) (Received 1 August 2020; revised manuscript received 15 September 2020)

Abstract

As the substance carrier of nonlinear optical phenomenon, saturable absorber is an essential material for generating the ultrafast pulse laser. The saturable absorbers based on graphene, transition metal sulfides, topological insulators, black phosphorus and other two-dimensional (2D) materials exhibit different optical advantages. However, limitations of those single 2D materials as saturable absorbers exist. The nanomaterial heterojunction structure can combine the advantages of different 2D materials to achieve optical complementarity, and it also provides new ideas for generating the ultrafast laser with ultrashort pulse duration and high peak power. Here in this paper, the preparation methods, band alignment and the electronic transition mechanism of heterojunction saturable absorbers are summarized, and the recent research progress of ultrafast lasers based on 2D nano-heterostructures are also reviewed, including the wavelength, pulse width, repetition frequency and pulse energy. Therefore, 2D nano-heterostructure exhibits great potential applications in future optical modulator and optical switch.

Keywords: two-dimensional materials, heterostructure, saturable absorber, ultrafast laserPACS: 81.07.Bc, 79.60.Jv, 42.55.Wd, 42.65.ReDOI: 10.7498/aps.69.20201235

^{*} Project supported by the National Natural Science Foundation of China (Grant No. 62005053), the One-Hundred Young Talents Program of Guangdong University of Technology, China (Grant No. 220413293), and the Natural Science Foundation of Guangdong Province, China (Grant Nos. 2020A1515011178, 2017B030306003).

 $[\]dagger$ Corresponding author. E-mail: hfdong@gdut.edu.cn